d d x ( f + g ) = d f d x + d g d x {\displaystyle {\frac {d}{dx}}(f+g)={\frac {df}{dx}}+{\frac {dg}{dx}}}
d d x ( c f ) = c d f d x {\displaystyle {\frac {d}{dx}}(cf)=c{\frac {df}{dx}}}
d d x ( f g ) = f d g d x + g d f d x {\displaystyle {\frac {d}{dx}}(fg)=f{\frac {dg}{dx}}+g{\frac {df}{dx}}}
d d x ( f g ) = g d f d x − f d g d x g 2 {\displaystyle {\frac {d}{dx}}\left({\frac {f}{g}}\right)={\frac {g{\frac {df}{dx}}-f{\frac {dg}{dx}}}{g^{2}}}}
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) g ′ ( x ) {\displaystyle [f(g(x))]'=f'(g(x))g'(x)}
d d x sin ( x ) = cos ( x ) {\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)}
d d x cos ( x ) = − sin ( x ) {\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)}
d d x tan ( x ) = sec 2 ( x ) {\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)}
d d x cot ( x ) = − csc 2 ( x ) {\displaystyle {\frac {d}{dx}}\cot(x)=-\csc ^{2}(x)}
d d x sec ( x ) = sec ( x ) tan ( x ) {\displaystyle {\frac {d}{dx}}\sec(x)=\sec(x)\tan(x)}
d d x csc ( x ) = − csc ( x ) cot ( x ) {\displaystyle {\frac {d}{dx}}\csc(x)=-\csc(x)\cot(x)}