lim h → 0 f ( x + h ) − f ( x ) h {\displaystyle \lim \limits _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}
lim x → p k = k lim x → p x = p lim x → p f ( x ) = f ( p ) lim x → p k ⋅ f ( x ) = k ⋅ lim x → p f ( x ) lim x → p ( f ( x ) + g ( x ) ) = lim x → p f ( x ) + lim x → p g ( x ) lim x → p ( f ( x ) − g ( x ) ) = lim x → p f ( x ) − lim x → p g ( x ) lim x → p ( f ( x ) ⋅ g ( x ) ) = lim x → p f ( x ) ⋅ lim x → p g ( x ) lim x → p ( f ( x ) / g ( x ) ) = lim x → p f ( x ) / lim x → p g ( x ) lim x → p ( f ( x ) ) n = ( lim x → p f ( x ) ) n lim x → p f ( x ) n = lim x → p f ( x ) n {\displaystyle {\begin{matrix}\lim \limits _{x\to p}&k&=&k\\\lim \limits _{x\to p}&x&=&p\\\lim \limits _{x\to p}&f(x)&=&f(p)\\\lim \limits _{x\to p}&k\cdot f(x)&=&k\cdot \lim \limits _{x\to p}&f(x)\\\lim \limits _{x\to p}&(f(x)+g(x))&=&\lim \limits _{x\to p}f(x)+\lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)-g(x))&=&\lim \limits _{x\to p}f(x)-\lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)\cdot g(x))&=&\lim \limits _{x\to p}f(x)\cdot \lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)/g(x))&=&\lim \limits _{x\to p}f(x)/\lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x))^{n}&=&(\lim \limits _{x\to p}f(x))^{n}\\\lim \limits _{x\to p}&{\sqrt[{n}]{f(x)}}&=&{\sqrt[{n}]{\lim \limits _{x\to p}f(x)}}\\\end{matrix}}}
lim x → 0 x sin x = 1 lim x → 0 x tan x = 1 lim x → 0 sin x x = 1 lim x → 0 tan x x = 1 lim x → ∞ x sin ( 1 x ) = 1 lim x → ∞ x tan ( 1 x ) = 1 lim x → 0 a x sin b x = a b lim x → 0 a x tan b x = a b lim x → 0 sin a x b x = a b lim x → 0 tan a x b x = a b lim x → ∞ p x = 0 , − 1 < p < 1 lim x → ∞ a x m + b p x n + q = a p , m = n lim x → 0 a x m + b p x n + q = a p , m = n lim x → ∞ a x 2 + b x + c − p x 2 + q x + r = b − q 2 a , a = p lim x → ∞ a x 3 + b x 2 + c x + d 3 − p x 3 + q x 2 + r x + s 3 = b − q 3 a 2 3 , a = p lim x → ∞ ( 1 + 1 x ) x = e lim x → 0 ( 1 + x ) 1 x = e lim x → ∞ ( 1 + a x ) b x = e a b lim x → 0 ( 1 + a x ) b x = e a b {\displaystyle {\begin{matrix}\lim \limits _{x\to 0}&{\frac {x}{\sin x}}&=1\\\lim \limits _{x\to 0}&{\frac {x}{\tan x}}&=1\\\lim \limits _{x\to 0}&{\frac {\sin x}{x}}&=1\\\lim \limits _{x\to 0}&{\frac {\tan x}{x}}&=1\\\lim \limits _{x\to \infty }&x\sin({\frac {1}{x}})&=1\\\lim \limits _{x\to \infty }&x\tan({\frac {1}{x}})&=1\\\lim \limits _{x\to 0}&{\frac {ax}{\sin bx}}&={\frac {a}{b}}\\\lim \limits _{x\to 0}&{\frac {ax}{\tan bx}}&={\frac {a}{b}}\\\lim \limits _{x\to 0}&{\frac {\sin ax}{bx}}&={\frac {a}{b}}\\\lim \limits _{x\to 0}&{\frac {\tan ax}{bx}}&={\frac {a}{b}}\\\lim \limits _{x\to \infty }&p^{x}&=0,\qquad -1<p<1\\\lim \limits _{x\to \infty }&{\frac {ax^{m}+b}{px^{n}+q}}&={\frac {a}{p}},\qquad m=n\\\lim \limits _{x\to 0}&{\frac {{\frac {a}{x^{m}}}+b}{{\frac {p}{x^{n}}}+q}}&={\frac {a}{p}},\qquad m=n\\\lim \limits _{x\to \infty }&{\sqrt {ax^{2}+bx+c}}-{\sqrt {px^{2}+qx+r}}&={\frac {b-q}{2{\sqrt {a}}}},\qquad a=p\\\lim \limits _{x\to \infty }&{\sqrt[{3}]{ax^{3}+bx^{2}+cx+d}}-{\sqrt[{3}]{px^{3}+qx^{2}+rx+s}}&={\frac {b-q}{3{\sqrt[{3}]{a^{2}}}}},\qquad a=p\\\lim \limits _{x\to \infty }&(1+{\frac {1}{x}})^{x}&=e\\\lim \limits _{x\to 0}&(1+x)^{\frac {1}{x}}&=e\\\lim \limits _{x\to \infty }&(1+{\frac {a}{x}})^{bx}&=e^{ab}\\\lim \limits _{x\to 0}&(1+ax)^{\frac {b}{x}}&=e^{ab}\\\end{matrix}}}
lim x → p f ( x ) g ( x ) = lim x → p f ′ ( x ) g ′ ( x ) {\displaystyle \lim \limits _{x\to p}{\frac {f(x)}{g(x)}}=\lim _{x\to p}{\frac {f'(x)}{g'(x)}}}
contoh soal