Lompat ke isi

Soal-Soal Matematika/Permutasi dan kombinasi

Dari Wikibuku bahasa Indonesia, sumber buku teks bebas

Pemodelan faktorial

[sunting]

beberapa contoh sebagai berikut:

  1. faktorial
  • 0! = 1
  • 1! = 1
  • 2! = 2 x (2-1) = 2 x 1 = 1
  • 3! = 3 x (3-1) x (3-2) = 3 x 2 x 1 = 6
  • 4! = 4 x (4-1) x (4-2) x (4-3) = 4 x 3 x 2 x 1 = 24
  • n! =
  1. faktorial ganda
  • 2!! = 2
  • 3!! = 3 x (3-2) = 3 x 1 = 3
  • 4!! = 4 x (4-2) = 4 x 2 = 8
  • 5!! = 5 x (5-2) x (5-4) = 5 x 3 x 1 = 15
  • 6!! = 6 x (6-2) x (6-4) = 6 x 4 x 2 = 48
  • n!! = n x (n-2) x (n-4) x (n-6) dst…
  1. faktorial tiga
  • 3!!! = 3 = 3
  • 4!!! = 4 x (4-3) = 4 x 1 = 4
  • 5!!! = 5 x (5-3) = 5 x 2 = 10
  • 6!!! = 6 x (6-3) = 6 x 3 = 18
  • 7!!! = 7 x (7-3) x (7-6) = 7 x 4 x 1 = 28
  • 8!!! = 8 x (8-3) x (8-6) = 8 x 5 x 2 = 80
  • n!!! = n x (n-3) x (n-6) x (n-9) dst…
  1. bagian faktorial
  2. !0 = 0! (1) = 1
  • !1= 1! = 0
  • !2 = 2! = 1
  • !3 = 3! = 2
  • !4 = 4! = 9
  • !n = n!
  1. ? faktorial
  • 1$ = 1! = 1
  • 2$ = 2!2! = 4
  • 3$ = 3!3!3!3!3!3! =
  • n$ = (banyaknya hasil faktorial dari n!)
  1. lebih faktorial
  • S(1) = 1! = 1
  • S(2) = 2! x 1! = 2
  • S(3) = 3! x 2! x 1! = 12
  • S(4) = 4! x 3! x 2! x 1! = 288
  • S(n) =
  1. paling faktorial
  • H(1) = 11 = 1
  • H(2) = 22 x 11 = 4
  • H(3) = 33 x 22 x 11 = 108
  • H(n) =
  1. primorial
  • 2# = 2
  • 3# = 2 x 3 = 5
  • 5# = 2 x 3 x 5 = 30
  • 7# = 2 x 3 x 5 x 7 = 210
  • n# = 2 x 3 x 5 x …. x n (n adalah bilangan prima)

Permutasi

[sunting]
berulangan

rumus:

contoh soal

  1. Berapa banyak cara terambilnya 3 huruf yang terdiri dari A, B, C dan D??
Jawaban

  1. Ada lima kotak kosong yang tersedia. Kelima kotak kosong itu harus diisi (tidak boleh ada yang kosong). Kelima kotak kosong itu hanya boleh diisi dengan angka 1,2,3,4,5. Ada berapa banyak cara untuk mengisi kotak kosong?
Jawaban

  1. Angka-angka terdiri atas 0, 9, 8, 7, 6, 5.
  • Ada berapa banyak cara enam angka yang berbeda tersusun?
  • Ada berapa banyak cara tiga angka yang berbeda tersusun?
  • Ada berapa banyak cara yang lebih dari 780?
Jawaban

tanpa berulangan

rumus:

contoh soal

  1. Di dalam kelas mengadakan pemilihan ketua, wakil ketua dan sekretaris dimana kelas terdiri dari 10 murid. Ada berapa banyak carakah jabatan tersebut dipilih?
Jawaban

Kombinasi

[sunting]
berulangan

rumus:

contoh soal

  1. Kamu pergi ke sebuah toko donat. Toko donat itu menyediakan 10 jenis donat berbeda. Berapa banyak cara jika kamu ingin membeli tiga donat?
Jawaban

tanpa berulangan

rumus:

contoh soal

  1. Kamu mempunyai 5 pensil warna dengan warna yang berbeda yaitu; merah, kuning, hijau, biru dan ungu. Kamu ingin membawanya ke sekolah. Tapi kamu hanya boleh membawa dua pensil warna. Ada berapa banyak cara untuk mengkombinasikan pensil warna yang ada?
Jawaban

Jenis-jenis permutasi

[sunting]

jenis-jenis permutasi yaitu

  • Permutasi-k dari n benda

  • permutasi identik

contoh soal

  1. Berapa banyak kata yang terbentuk dari kata “KAKAO"?
Jawaban

  1. Ada tiga warna bendera yaitu 4 buah merah, 2 putih dan 5 biru. Berapa banyak cara jika:
  • Bebas
  • 2 bendera putih harus ditengah
Jawaban

  • permutasi elemen

  1. Ada berapa cara bila 6 orang remaja menempati tempat duduk yang akan disusun dalam suatu susunan yang teratur (sejajar) jika:
  • Posisi bebas
  • Dua orang harus berdampingan
  • Hanya dua orang diundang
Jawaban

  1. Ada 4 pria dan 4 wanita sedang berdiri. Ada berapa cara jika:
  • Bebas
  • Hanya pria berdampingan
  • Pria dan wanita harus berdampingan
  • Pria dan wanita harus selang seling
Jawaban

  1. Ada 4 pria dan 3 wanita sedang berdiri. Ada berapa cara jika:
  • Bebas
  • Hanya pria berdampingan
Jawaban

  1. Ada berapa cara 100 orang bersalaman sebanyak satu kali?
Jawaban

atau

  1. Saya memiliki 5 buku kimia, 3 buku matematika, dan 2 buku fisika yang masing-masing buku berbeda satu sama lain. Buku-buku tersebut akan saya susun dalam sebuah rak buku. Berapa banyak cara penyusunan yang mungkin saya lakukan jika:
  • Bebas
  • Hanya kimia berkelompok
  • Semua berkelompok masing-masing
Jawaban

  • permutasi siklis

contoh soal

  1. Sekelompok mahasiswa yang terdiri dari 10 orang akan mengadakan rapat dan duduk mengelilingi sebuah meja, ada berapa carakah sepuluh mahasiswa tersebut dapat diatur pada sekeliling meja (melingkar) tersebut jika:
  • Posisi bebas
  • Dua orang harus berdampingan
  • Hanya dua orang diundang
Jawaban